Cool Uris For The Semantic Web http://www.w3.org/TR/cooluris/

In total we have 7 quotes from this source:

 Web document (information resource)

Like everything on the traditional Web, each of the pages mentioned above are Web documents. Every Web document has its own URI. Note that a Web document is not the same as a file: a single Web document can be available in many different formats and languages, and a single file, for example a PHP script, may be responsible for generating a large number of Web documents with different URIs. A Web document is defined as something that has a URI and can return representations (responses in a format such as HTML or JPEG or RDF) of the identified resource in response to HTTP requests. In technical literature, such as Architecture of the World Wide Web, Volume One [AWWW], the term Information Resource is used instead of Web document.

[..]

According to W3C guidelines ([AWWW], section 2.2.), we have a Web document (there called information resource) if all its essential characteristics can be conveyed in a message. Examples are a Web page, an image or a product catalog.

#web-documents  #URI  #documents  #files  #Web  #pages 
 Web clients and servers use...

Web clients and servers use the HTTP protocol [RFC2616] to request representations of Web documents and send back the responses. HTTP has a powerful mechanism for offering different formats and language versions of the same Web document known as content negotiation. When a user agent (such as a browser) makes an HTTP request, it sends along some HTTP headers to indicate what data formats and language it prefers. The server then selects the best match from its file system or generates the desired content on demand, and sends it back to the client. [...] RDF/XML, the standard serialisation format of RDF, has its own content type, application/rdf+xml. Content negotiation thus allows publishers to serve HTML representations of a Web document to traditional Web browsers and RDF representations to Semantic Web-enabled user agents. This also allows servers to provide alternative RDF serialisation formats like Notation3 [N3] or TriX [TriX].

#web-documents  #content-negotiation  #server  #format  #documents 
 The Resource Description Framework RDF...

The Resource Description Framework RDF allows users to describe both Web documents and concepts from the real world—people, organisations, topics, things—in a computer-processable way. Publishing such descriptions on the Web creates the Semantic Web.

#Web  #Semantic-Web  #web-documents  #RDF  #users 
 Given such a URI, how...

Given such a URI, how can we find out what it identifies? We need some way to answer this question, because otherwise it will be hard to achieve interoperability between independent information systems. We could imagine a service where we can look up a description of the identified resource, similar to today's search engines. But such a single point of failure is against the Web's decentralised nature. Instead, we should use the Web itself—an extremely robust and scalable information publishing system—as a lookup service for resource descriptions. Whenever a URI is mentioned, we can look it up to retrieve a description containing relevant information and links to related data. This is so important that we make it our number one requirement for cool URIs:

  1. Be on the Web. Given only a URI, machines and people should be able to retrieve a description about the resource identified by the URI from the Web. Such a look-up mechanism is important to establish shared understanding of what a URI identifies. Machines should get RDF data and humans should get a readable representation, such as HTML. The standard Web transfer protocol, HTTP, should be used.

  2. Be unambiguous. There should be no confusion between identifiers for Web documents and identifiers for other resources. URIs are meant to identify only one of them, so one URI can't stand for both a Web document and a real-world object.

We note that our requirements seem to conflict with each other. If we can't use URIs of documents to identify real-world object, then how can we retrieve a representation about real-world objects based on their URI? The challenge is to find a solution that allows us to find the describing documents if we have just the resource's URI, using standard Web technologies.

#real-world-objects  #URI  #web-documents  #search-engines  #Web  #documents 
 The Semantic Web is envisioned...

The Semantic Web is envisioned as a decentralised world-wide information space for sharing machine-readable data with a minimum of integration costs. Its two core challenges are the distributed modelling of the world with a shared data model, and the infrastructure where data and schemas can be published, found and used.

#Semantic-Web  #data-model 
 Web documents have always been...

Web documents have always been addressed with URIs (in common parlance often referred as Uniform Resource Locators, URLs). This is useful because it means we can easily make RDF statements about Web pages, but also dangerous because we can easily mix up Web pages and the things, or resources, described on the page.

So the question is, what URIs should we use in RDF? As an example, to identify the frontpage of the Web site of Example Inc., we may use http://www.example.com/. But what URI identifies the company as an organisation, not a Web site? Do we have to serve any content—HTML pages, RDF files—at those URIs? In this document we will answer these questions according to relevant specifications. We explain how to use URIs for things that are not Web pages, such as people, products, places, ideas and concepts such as ontology classes. We

#web-pages  #URI  #pages  #Web-sites  #things  #documents 
 The solutions described in the...

The solutions described in the following apply to deployment scenarios in which the RDF data and the HTML data is served separately, such as a standalone RDF/XML document along with an HTML document. The metadata can also be embedded in HTML, using technologies such as RDFa [RDFa Primer], microformats and other documents to which the GRDDL [GRDDL] mechanisms can be applied.

[...]

The first solution is to use “hash URIs” for non-document resources. URIs can contain a fragment, a special part that is separated from the rest of the URI by a hash symbol (“#”).

When a client wants to retrieve a hash URI, then the HTTP protocol requires the fragment part to be stripped off before requesting the URI from the server. This means a URI that includes a hash cannot be retrieved directly, and therefore does not necessarily identify a Web document. But we can use them to identify other, non-document resources, without creating ambiguity.

[...]

The second solution is to use a special HTTP status code, 303 See Other, to give an indication that the requested resource is not a regular Web document. Web architecture tells you that for a thing resource (URI) it is inappropriate to return a 200 because there is, in fact, no suitable representation for those resources. However,

Since 303 is a redirect status code, the server can give the location of a document that represents the resource. If, on the other hand, a request is answered with one of the usual status codes in the 2XX range, like 200 OK, then the client knows that the URI identifies a Web document.

Content-negotiation is then used when retrieving a representation from the document URI using a HTTP request. The server decides (see Section 4.7) to return either HTML or RDF (or more alternative forms) and sets the Content-Location header to the URI where the specific representation can be retrieved. This setup should be used when the RDF and HTML (and possibly more alternative representations) convey the same information in different forms.

[...]

When the RDF and HTML representations of the resource differ substantially, the previous setup should not be used. They are not two versions of the same document, but different documents altogether. Again, the Web server would be configured to answer requests with a 303 status code and a Location HTTP header that provides the URL of a document that represents the resource.

[..]

Which approach is better? It depends. The hash URIs have the advantage of reducing the number of necessary HTTP round-trips, which in turn reduces access latency. A family of URIs can share the same non-hash part. The descriptions of http://www.example.com/about#exampleinc, http://www.example.com/about#alice, and http://www.example.com/about#bob are retrieved with a single request to http://www.example.com/about. However this approach has a downside. A client interested only in #product123 will inadvertently load the data for all other resources as well, because they are in the same file. 303 URIs, on the other hand, are very flexible because the redirection target can be configured separately for each resource. There could be one describing document for each resource, or one large document for all of them, or any combination in between. It is also possible to change the policy later on.

[..]

Conclusion.

Hash URIs should be preferred for rather small and stable sets of resources that evolve together. The ideal case are RDF Schema vocabularies and OWL ontologies, where the terms are often used together, and the number of terms is unlikely to grow out of control in the future.

Hash URIs without content negotiation can be implemented by simply uploading static RDF files to a Web server, without any special server configuration. This makes them popular for quick-and-dirty RDF publication.

URIs of the bob#this form can be used for large sets of data that are, or may grow, beyond the point where it is practical to serve all related resources in a single document. 303 URIs may also be used for such data sets, making neater-looking URIs, but with an impact on run-time performance and server load.

#web-documents  #server  #URI  #HTML  #web-server  #RDF